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The time-dependent quantum wave packet approach has been improved and formulated to
treat the multiple surface problems and thus provided a new simple, yet a clear quantum picture
for interpreting the reaction mechanism underlying the nonadiabatic dynamical processes.
The method keeps the salient feature of the original quantum wave packet theory developed for
single surface problems, i.e. the introduction of the absorbing potential and the grid basis
including the discrete variable representation and the fast Fourier transformation, which makes
the present methodology a very efficient implement for the nonadiabatic quantum scattering
calculations. Here, we review the theoretical basis of this approach and its applications to
the fundamental triatomic chemical reactions, the latter include the nonadiabatic dynamics
calculations on the FþH2, FþHD, FþD2, O(1D)þN2, O(3P, 1D)þH2, Dþ

þH2, and
Hþ

þD2 reactions. We also present a thorough historical overview of the theoretically
nonadiabatic dynamical investigations particularly on the triatomic systems, and show
how the time-dependent wave packet approach complements the time-independent quantum
scattering theory.
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1. Introduction

Tremendous advances in computer science as well as in electronic structure theory
have stimulated the recent theoretical interest in explaining the various aspects of the
electronically nonadiabatic processes in chemical reactions [1–3]. On the theoretical
side, the nonadiabatic dynamical investigation has now evolved to a stage where
the exact quantum scattering calculation has finally been achieved for a few benchmark
triatomic systems. Going beyond the triatomic systems and more towards the
complicated polyatomic systems, however, remains a formidable challenge to exact
quantum dynamics. The dynamical treatment of the polyatomic reactions [4–6] will
therefore necessarily turn to the semiclassical mechanical approach at the present
stage; and to this end, various theoretical approaches have been developed thus far
to treat the chemical reactions with nonadiabatic effects. These included the Tully’s
fewest switches (TFS) [7, 8], the fewest switches with time-uncertainty (FSTU) [9, 10],
the exact complete passage (ECP) [11], the semiclassical Ehrenfest (SE) [12], the
coherent switching decay of mixing (CSDM) [13], the full multiple spawning (FMS)
[14, 15], the multi-configuration time-dependent Hartree (MCTDH) [16, 17] methods,
etc. Coupled with the quantum features, the semiclassical treatment of the reaction
system indeed provides a pragmatic way for simulating the nonadiabatic processes both
in the triatomic and the polyatomic reactions. But for interpreting the reaction
mechanism underlying the nonadiabatic processes occurring in triatomic system, the
full quantum dynamical treatment is much more easy to implement, and is therefore
preferable to the semiclassical mechanical methods. Although the quantum dynamics
has now reached a point where the multiple surface problem has been recently
solved without any approximation for a few benchmark abstraction reactions by
time-independent approach, the complexity of quantum scattering calculations
involving a large number of electronic states, as well as the diversity in chemical
reactions still offer us the opportunity to apply different theoretical methodologies
for exploring the dynamical information related to the electronically nonadiabatic
processes.

The challenge associated with the nonadiabatic quantum scattering calculations lies
in that the equation of motion should be formulated within a basis set of electronic
wave functions since more than one electronic state is involved in the overall dynamics.
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As a result, the number of the basis functions used in expanding the wave function
of the system increases rapidly with the inclusion of the internal rovibrational basis
functions for each electronic state, thus making the quantum scattering calculations
intractable. The use of a high-speed computer and a parallel computation may
alternatively provide a solution to this problem, but the essential way lies still in
developing new dynamical methods that require less computational resources. The
time-dependent quantum wave packet approach [18–24] seems to serve this purpose,
because it is well acknowledged from the adiabatic scattering calculations that the time-
dependent wave packet approach has advantages over the time-independent quantum
method, in that, its computational cost scales with less than N2 as compared with the
latter one with N3; here N is the number of basis functions. The time-dependent wave
packet approach takes advantage of the fast Fourier transformation and the discrete
variable representation that was introduced to evaluate the action of the Hamiltonian
onto the wave function, as well as the absorbing potential to reduce the spatial extent of
the grid. Hence, it is usually numerically more efficient to solve the Schrödinger
equation using the wave packet method. However, to date, the applications of the time-
dependent wave packet method to the chemical reactions have successfully revealed
their adiabatic dynamical features only. It was therefore realised that an improvement
should be made to this method, for the purpose of using it as an efficient computational
tool to handle the nonadiabatic dynamical issues. For this reason, the time-dependent
wave packet method has been introduced to treat the nonadiabatic dynamics of
chemical reactions, and has been developed from the one within the framework of the
Born-Oppenheimer approximation [19] into an appropriate approach to solve the
Schrödinger equation formulated with the augment of electronic basis. It is also worth
noting that an accurate ab initio description of the potential energy surfaces and the
nonadiabatic coupling terms is clearly essential in any dynamical calculation.

In this review, we shall explore the uses and advantages of this time-dependent
quantum wave packet approach in the area of nonadiabatic quantum scattering
calculations. After a historical overview on the advances made in the previous
theoretically nonadiabatic treatments for the triatomic chemical reactions in section 2,
section 3 introduces the theoretical framework of the time-dependent wave packet
method for nonadiabatically investigating the triatomic systems. The applications
of this method to benchmark reactions F(2P3/2,

2P1/2)þH2, F(2P3/2,
2P1/2)þHD,

and F(2P3/2,
2P1/2)þD2, to the electronic quenching process of O(1D)þN2, to the

spin–orbit-induced intersystem crossing effects in O(3P,1D)þH2, and to the charge
transfer processes in Dþ

þH2 and Hþ
þD2 are presented in section 4. These quantum

results demonstrate the dynamical phenomena of the chemical processes which occur in
the triatomic systems either with barriers or with potential wells, and provide physical
insights into the reaction mechanisms. Finally, section 5 concludes with a suggestion
for future developments of the method.

2. Historical overview

One of the most widely investigated reactions is the abstraction reaction
F(2P3/2,

2P1/2)þH2 in which the ground state 12A0 and the excited state 12A00 correlate
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adiabatically with the ground spin state F(2P3/2), while the excited state 22A0 correlates
with the excited spin state F(2P1/2). Triggered by the pioneering work of Tully [25], there

are extensive theoretical reports [26–33] on the role of the excited spin state and
nonadiabatic effects in this reaction, of which the time-independent quantum dynamical

approach by Alexander et al. [30, 31] has yielded the recent success in providing the exact
and the accurate scattering calculations. They included into the Hamiltonian the

electronic (spin and orbital) angular momenta of the F atom to describe the electronic
motion with an exact treatment of their operation on the multi-state wave function.

They also recently fitted the diabatic potential energy surfaces and the spin–orbit

coupling matrix which were used in the quantum scattering calculations carried out
within the uncoupled electronic basis [31]. These elaborate nonadiabatic quantum

calculations of Alexander et al. [30, 31] have revealed that the F atom in the excited spin
state contributes little to the overall reactivity, with its contribution being clearly

observed in the formation of product HF in the v¼ 3 vibrational level [34, 35], and the
fine structure of the reaction probabilities and the integral cross sections is insensitive to

the nonadiabatic effects. In addition, the agreement between the state-to-state
calculations and the experimentally measured angular distributions for FþH2 [36],

and between the relative cross section and the experimental excited functions for

the FþHD [34] reaction has been revealed by these exact quantum studies. With a
similar approach, Alexander et al. [37–40] also extended their nonadiabatic studies to the

Cl(2P3/2,
2P1/2)þH2 and O(1D)þH2 reactions very recently. They found that except

for the spin–orbit coupling, the other coupling terms play insignificant roles in the

reaction dynamics of Cl(2P3/2,
2P1/2)þH2, and the discrepancy between the calculated

differential cross section and the experimental measurement implies some defects in

the exit channel of the ClHH PES. Combined with a capture theory, their calculated
fine-structure branching ratio of the product OH in the O(1D)þH2 reaction with four

electronic states involved in the dynamics, revealed a propensity for the formation of
product OH in� (� doublet) state and a statistical distribution of the cross sections over

the final-state rotational quantum number. Similar to the FþH2 reaction, the role of

the excited state and spin–orbit coupling in the ClþH2 reaction has also been
investigated by Skouteris et al. [41] and by Xie et al. [42]. Furthermore, Skouteris et al.

[41] performed the time-dependent quantum scattering calculations for ClþH2 by using
the Chebyshev iteration [43].

Cl(2P3/2,
2P1/2)þHCl reaction also attracted lots of theoretical attentions. Schatz and

coworkers [44, 46] have fitted the diabatic potential energy surfaces of this system to
ab initio data calculated at two different levels, the higher one of which is RCCSD-T/

aug-VTZ. They then performed the time-independent quantum scattering calculations
within hyperspherical coordinates on these potential surfaces, together with the

electrostatic, Coriolis, spin–orbit couplings, to obtain the cumulative reaction
probability, the J-shift rate constant for total angular momentum J¼ 1/2. Recently,

they investigated the influence of the spin–orbit coupling on the reaction dynamics via

varying the spin–orbit coupling between �150 to 150% of the true Cl value in the time-
independent quantum scattering calculations, as well as the influence of the van der

Waals wells on the cumulative reaction probability and the fine-structure-resolved
cumulative reaction probability by performing a J¼ 1/2 quantum scattering calculation

[47, 48]. A thorough investigation on the O(1D)þH2 reaction has also been conducted
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by Schatz and coworkers [49–53]. They employed various theoretical approaches
such as the TFS method, the approximated quantum theory, and the helicity decoupled

wave packet method in the nonadiabatic calculations performed on different potential

energy surfaces, including their own constructed potential energy surface of the excited
state 1A00, the diatomics-in-molecules (DIM) potential energy surface, and the accurate

ab initio Dobbyn–Knowles (DK) potential energy surface. The physical insights into the
role of the excited states 1A00 and 2A0, and the comparison between the estimated total

reaction cross sections and the experimental data are therefore provided. The reaction

probabilities of this reaction and its isotopic reactions O(1D)þHD/D2 have also been
calculated on the same DK potential energy surface in the time-independent quantum

study of Takayanagi [54]. Based on the analytical spin–orbit coupling matrix fitted to

the calculated data using the Breit-Pauli method, Schatz and co-workers [55–57] also
carried out, for the first time, the theoretical studies of intersystem crossing effects in the

O(3P,1D)þH2, S(3P,1D)þH2 reactions by using trajectory surface hopping (TSH)

method within a mixed representation. They calculated the fine-structure-resolved
branching ratio and the product rotational distributions. The nonadiabatic studies of

Schatz et al. [58, 59] still include the investigations on the Renner-Teller effects in the
N(2D)þH2 reaction and on the reactive and the nonreactive quenching in the OHþH

system [60].
Another reaction that has long been of interest to this field is the reaction ofHþ

3 system.

Its simplicity and yet rich reaction variety involving the charge transfer processes, has
made the reaction and its isotopic variants the paradigms for a full quantum treatment.

As early as 1972, Tully et al. [61] reported a TSH study of Hþ
þD2 reaction. Nakamura

and co-workers [62–64] calculated the cumulative reaction probability for the total

angular momentum J¼ 0 of (DþH2)
þ reaction using both the TSHmethod based on the

developed Zhu–Nakamura theory and the time-independent quantum scattering theory,
and Takayanagi et al. [65] performed similar scattering calculations for this reaction

system. The reaction probability for collinear reaction (HþH2)
þ was calculated by

Ushakov et al. [66] also using the time-independent quantum theory and the DIM
potential matrix. Ichihara et al. [67] reported the reaction cross sections at low collision

energy for the Hþ
þH2 reaction while Chajia et al. [68] investigated the collisions of Hþ

with D2 and with H2 at low energies using the FMS method. The Hþ
3 system was also

subjected to the TSH study of Ichihara et al. [69]. In addition, there are many other

theoretical nonadiabatic studies such as the TSH and the time-independent quantum
scattering calculations on the electronic quenching process of O(1D)þN2 [70–72],

the time-independent quantum scattering calculations on Br(2P1/2)þH2 [73], the TSH

studies of the charge transfer processes in (ArþH2)
þ [74, 75], and the TSH studies of

CþCH [76], NaþN2 [77] etc.
As should already be apparent from the above overview, most of the theoretically

nonadiabatic treatments were carried out within either time-independent framework or

semiclassical framework – this is in sharp contrast to the dynamics studies of adiabatic
problems where the time-independent and the time-dependent quantum scattering

theories give almost the same contribution and are complementary to each other.
Therefore, the extension of the time-dependent quantum wave packet theory to the

nonadiabatic dynamics is to be of fundamental importance for the development of

dynamics methods in this exciting field.
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3. Time-dependent quantum wave packet approach for AQBC reaction

We have used the time-dependent wave packet approach in which the split-

operator scheme [78] is employed to numerically solve the Schrödinger equation for

a reaction system based on the reactant Jacobi coordinates. The multi-state wave

function is expanded within an electronic-translational-vibrational-rotational basis set.

The starting point for the numerical solution is to construct the initial wave function

that is to be propagated on a specific electronic state. Since the fundamental lines of the

method could be found in [19, 20], here we only emphasise on those details associating

with the treatment of the multiple electronic states.

3.1. Propagation of the wave function

To numerically solve the Schrödinger equation for a triatomic reaction system that is

formulated within a basis set of electronic wave functions, the split-operator scheme [78]

has been modified and then used for treating the propagation of the wave functions on

several potential energy surfaces associated with the multiple electronic states. In terms

of the reactant Jacobi coordinates, the time-dependent Schrödinger equation within

a diabatic electronic basis for AþBC reaction system involving the multiple electronic

states can be written as

i�h
@

@t
C ¼ HC

H ¼ �
�h2

2�R

@2

@R2
�

�h2

2�r

@2

@r2
þ VðrÞ þ

ĵ 2

2�rr2
þ

L̂2

2�RR2
þ V

ð3:1:1Þ

with R(r) being the distance between atom A and the center of the mass of molecule BC

(the distance between atom B and C), and �R(�r)the corresponding reduced mass, V(r)

is the reference diatomic vibrational potential, and j and L is the rotational and the

orbital angular momentum respectively.
The wave function C is a column vector,

C ¼

C1

C2

. . .
Cm

2
664

3
775 ð3:1:2Þ

with Ci being the expansion coefficient obtained by expanding the multi-state wave

function Cmulti in a diabatic electronic basis {�i} (i¼ 1, m) [79],

Cmulti ¼
X
i

Ci�i ð3:1:3Þ

In fact, Ci describes the nuclear motion in the ith electronic state, and is

therefore further expanded in terms of a translational-vibrational-(body-fixed)

206 T.-S. Chu et al.

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
6
:
1
4
 
2
1
 
J
a
n
u
a
r
y
 
2
0
1
1



rotational basis set [19],

Ci ¼
X
nvjk

Fnvjk,iu
v
nðRÞ�vðrÞYjkðR, rÞ ð3:1:4Þ

n, v, j(k) labels the translational basis, the vibrational basis, and the rotational basis

respectively.
V denotes the matrix representation of the potential energy in the diabatic electronic

basis,

V ¼

V11 V12 . . . . . . V1m

V21 V22 . . . . . . V2m

. . . . . . . . . . . . . . .

. . . . . . . . . . . . . . .
Vm1 Vm2 . . . . . . Vmm

2
66664

3
77775 ð3:1:5Þ

in which the diagonal elements Vii ¼ �ih jHel �ij i define the diabatic potential energy

surfaces for each electronic state, and the off-diagonal elements Vij ¼ �ih jHel �j

�� �
are

generally non-zero, here, Hel is the electronic Hamiltonian.
The Schrödinger equation (3.1.1) can be numerically solved through the time

propagation of the wave function by applying a modified split-operator scheme. For

a short time step � in the propagation, the wave function at time tþ� can be derived

from C(t) as follows,

Cðtþ�Þ ¼ e�iH0�=2e�iVrot�=2e�iV�e�iVrot�=2e�iH0�=2CðtÞ

¼ e�iH0�=2e�iVrot�=2Te�iVdiag�Tþe�iVrot�=2e�iH0�=2CðtÞ

¼ e�iH0�=2e�iVrot�=2TETþe�iVrot�=2e�iH0�=2CðtÞ, ð3:1:6Þ

with H0 and Vrot being defined as,

H0 ¼ �
�h2

2�R

@2

@R2
�

�h2

2�r

@2

@r2
þ VðrÞ

Vrot ¼
ĵ 2

2�rr2
þ

L̂2

2�RR2
, ð3:1:7Þ

and Vdiag is the diagonal matrix of V,

Vdiag ¼

V1 0 0 . . . 0
0 V2 0 . . . 0
0 0 V3 . . . 0
. . . . . . . . . . . . 0
0 0 0 . . . Vm

2
66664

3
77775 ð3:1:8Þ

Time-dependent wave packet approach 207

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
6
:
1
4
 
2
1
 
J
a
n
u
a
r
y
 
2
0
1
1



Here, T denotes the transformation matrix from matrix V to Vdiag, and Tþ the
conjugated transposed matrix of T. E also represents the diagonal matrix composed
of the exponential functions as follows,

E ¼

e�iV1� 0 0 . . . 0
0 e�iV2� 0 . . . 0
0 0 e�iV3� . . . 0
. . . . . . . . . . . . 0
0 . . . . . . 0 e�iVm�

2
66664

3
77775 ð3:1:9Þ

Further, it is clear that the inclusion of the electronic angular momenta l̂ and ŝ in the
orbital angular momentum L̂ will cause the changes in the projection quantum numbers
�, � of l̂ and ŝ while they are acting onto the electronic wave function. Hence, during the

propagation of the wave function, the action of the centrifugal potential operator
L̂2=ð2�RR

2Þ should be first onto the electronic basis and then onto the nuclear wave
function, leading to the changes in all projection quantum numbers K, k, �, � of Ĵ, ĵ, l̂
and ŝ, with K¼ kþ �þ �. For a detailed description of the action of

L̂2 ¼ ðĴ� ĵ� l̂� ŝÞ2 onto the wave function with both the electronic and the nuclear
parts, the reader is refered to [31].

To save the computational cost, the Coriolis coupling is often neglected which is
the case in the centrifugal sudden (CS) approximation. Within the CS approximation,
the action of L̂2 onto the wave function can be simplified to (here we use Kk��j i to
denote the wave function for simplicity)

L̂2 Kk��j i ¼ ½JðJþ 1Þ þ jð jþ 1Þ þ lðlþ 1Þ þ sðsþ 1Þ � 2K2 þ 2kð�þ �Þ þ 2��� Kk��j i

ð3:1:10Þ

Otherwise, if the Coriolis coupling is included in the calculation, then such treatment
is called the coupled-channel (CC) calculation.

3.2. Preparation of the initial wave function

For a specific electronic state j on which the initial wave packet is to be propagated, the
corresponding wave function is chosen as a product of a specific rovibrational wave
function and a localised translational wave packet expressed in a standard Gaussian
function [19, 20] while being zero for the remaining electronic states,

Ciðt ¼ 0Þ ¼
’ �k,iðRÞ�v0j0,iðrÞYj0k0,iðR̂, r̂Þ ði ¼ jÞ

0 ði 6¼ jÞ

(
ð3:2:1Þ

where �v0j0,iðrÞ is the rovibrational function with respect to the initial rovibrational state
v0, j0, and is expanded in the vibrational basis {�v(r)}. Yj0k0,iðR̂, r̂Þ represents the
rotational function corresponding to the initial rotational state of j0, k0. ’ �k,iðRÞ denotes
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the Gaussian function with an average momentum �k and the wave packet width �,

’ �k,iðRÞ ¼
1

��2

� �1=4

expð�ðR� R0Þ
2=2�2Þe�i �kR ð3:2:2Þ

In addition, if we further consider that the diagonal form of the wave function can
only be achieved within a coupled electronic basis j jj� > ( ĵ ¼ l̂þ ŝ, j� ¼ �þ �), hence, if
the quantum scattering calculations are performed within an uncoupled electronic basis
jl�s� >, it is necessary to transform the above constructed initial wave function with
a diagonal form in the coupled electronic basis to its corresponding form in the
uncoupled electronic basis before the wave packet propagation. Such transformation
can be obtained via the following Clebsch–Gordan (CG) transformation [44],

j��>¼
X
jj�

< jj�jl�s�> jjj�> ð3:2:3Þ

i.e. the wave functions expressed in the two different electronic basis sets are connected
by the CG coefficients < jj�jl�s�>.

3.3. Analysis of the final wave function

Having propagated for a sufficiently longer time, we can now derive the time-
independent wave function from the time-dependent final wave function by the
following transformation from time-domain to the energy domain [19] (here, we omit
the subscript i for simplicity),

CþðE Þ
�� �

¼
1

aðE Þ

Z 1

0

eði=�hÞEt CðtÞ
�� �

dt

aðE Þ ¼ CþðE Þ
�� Cð0Þ

� �
¼ �E

��Cð0Þ
� � ð3:3:1Þ

where �E is a sine function and a Ricatti-Bessel function for zero and nonzero partial
wave function, respectively.

The reaction probability in the reactive scattering calculation can be obtained by
performing the flux calculation at a fixed surface r¼ rs. For each electronic state i, the
following formula is used to calculate the reaction probability,

PR
v0j0k0,i

ðE Þ ¼
�h

�r
Im

X
nvjkv0

�F �
nvjk,iðE Þ��

v ðrÞ �
@

@r
�v0 ðrÞ �Fnv0jk,iðE Þ

 !
r¼rs

�Fnvjk,iðE Þ ¼
1

aðE Þ

Z 1

0

eði=�hÞEt �Fnvjk,iðtÞdt

�Fnvjk,iðtÞ ¼
X
l

An,lFlvjk,iðtÞ

ð3:3:2Þ

with An,l being the transformation matrix between the basis and the discrete variable
representations along the R-direction. Here, v0, j0 is the initial vibrational and
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rotational quantum number of the diatomic molecule, and k0 is the projection quantum
number of j0.

However, in nonreactive scattering calculation, the probability correlating to the
electronic state i can be obtained by evaluating the flux at R¼Rs as follows,

PR
v0j0k0,i

ðE Þ ¼
�h

�R
Im

X
vjknn0

F�
nvjk,iðE Þu�nðRÞ �

@

@R
un0 ðRÞFn0vjk,iðE Þ

 !
R¼Rs

ð3:3:3Þ

The cross section for electronic state i can be calculated by summing over the
probability for all possible partial waves (total angular momentum J ) [19],

�j0v0,iðE Þ ¼
�

k2j0v0

X
J

ð2Jþ 1ÞPJ
j0v0,i

ðE Þ

PJ
j0v0,i

ðE Þ ¼
1

2j0 þ 1

X
k0

PJ
j0k0v0,i

ðE Þ

ð3:3:4Þ

where kj0v0 is the initial wave number at a fixed collision energy.

4. Examples

4.1. Nonadiabatic effects on the reaction mechanism of F(2P3/2,
2P1/2)QH2 [97]

We applied the improved time-dependent wave packet method to the benchmark
FþH2 reaction that is subjected to the previous elaborate time-independent scattering
quantum calculations of Alexander et al. [31], and compared the calculated results
of the two different quantum scattering methods. The Coriolis coupling is neglected
in the present calculation (CS calculation).

The diabatic potential matrix (Alexander-Stark-Werner (ASW) potential energy
surface [31]) and the spin–orbit coupling matrix used in the calculation are the same as
those in the calculations of Alexander et al. [31], and can be expressed as:

V1, V2, V�, V� are the four terms of the diabatic potential energy surface, A and B are

spin–orbit coupling terms. The six |��4(�¼ 0, �1, �¼�1/2) constitute the diabatic

electronic basis. In preparing the initial wave packet, the transformation from the

coupled electronic basis function to the uncoupled electronic basis function has been

conducted and the two electronic bases are related to each other via the CG coefficients.

j0, 1=2i j0, �1=2i j1, 1=2i j1, �1=2i j � 1, 1=2i j � 1, �1=2i

j0, 1=2i V� 0 �V1 �21/2B �V1 0
j0, � 1=2i 0 V� 0 �V1 �21/2B �V1

j1, 1=2i �V1 0 V��A 0 V2 0

j1, � 1=2i �21/2B �V1 0 V�þA 0 V2

j � 1, 1=2i �V1 �21/2B V2 0 V�þA 0

j � 1, � 1=2i 0 �V1 0 V2 0 V��A
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The diabatic coupling effects, i.e. the electronic coupling V1 and V2 on the reaction

mechanism can be investigated by a comparison between the six-surface and the

two-surface scattering calculations, with the latter one neglecting these two electronic

coupling terms. In figures 1 and 2, we show the total reaction cross sections for the

ground spin state F(2P3/2) and the excited spin state F(2P1/2) atoms (with H2 in

its ground initial rovibrational state), respectively. The results calculated on both six

surfaces and on two surfaces are included. The corresponding time-independent
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Figure 1. The total reaction cross sections on the two-surface and six-surface for the reaction of F(2P3/2)
with H2 (v¼ j¼ 0) as a function of the translation energy [97]. The dashed lines correspond to the
time-independent results reported by Alexander et al. [31].
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Figure 2. The total reaction cross sections on the two-surface and six-surface for the reaction of F(2P1/2)
with H2 (v¼ j¼ 0) as a function of the translation energy [97]. The dashed lines correspond to the
time-independent results reported by Alexander et al. [31].
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quantum results of Alexander et al. [31] are also shown for comparison. For the excited
F(2P1/2) atom, the agreement between the two different quantum calculations is nearly
perfect, indicating that the Coriolis coupling slightly influences the reactivity of the
excited F atom. However, in the case of the ground state F(2P3/2) atom, the present
quantum results are larger than the time-independent cross sections at high collision
energy, due to which the present quantum calculations neglect the Coriolis coupling.
Further, we can see that, the excited F(2P1/2) atom has a larger internal energy and thus
illustrates a higher reactivity than the ground F(2P3/2) atom with lower collision energy.
Finally, the comparison between the two-surface and the six-surface calculated results
has revealed that the electronic coupling terms do have effects on the reaction
mechanism, and they affect the reactivity of the excited F(2P1/2) atom more than that
of the ground F(2P3/2) atom.

4.2. The reactivity of the ground and the excited spin state F(2P3/2,
2P1/2) atoms

with D2 [98]

Here, the time-dependent wave packet method has been employed to investigate the
role of the excited state in this reaction and compared with the previous study on the
F(2P3/2,

2P1/2)þH2(v¼ 0, j¼ 0) reaction. We calculate the total reaction probability
and the cross sections for the ground and the excited spin state F atoms, and further
calculate the rate constant from the total cross sections �(E) as follows:

KðTÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
8KBT

��R

s
ðKBTÞ

�2

Z 1

0

E�ðE Þ exp �
E

KBT

� �
dE ð4:2:1Þ

with KB being the Boltzmann constant and E the collision energy.
Figure 3 shows the calculated total reaction cross sections on the ASW potential

energy surface [31] for the ground and the excited state F atoms. For comparison, the
single-surface results calculated on the lowest adiabatic ASW surface are also included
in figure 3. At lower collision energies, the multiple surface result of the ground state F
atom agrees well with the single-surface result, however, the former deviates down
from the latter at higher collision energies, indicating an increasing role of the
nonadiabatic effects with higher collision energies. Similar to FþH2, the cross sections
of the excited F atom are slightly larger than those of the ground state F atom at very
low collision energies (see figure 4), but the cross sections of the ground and the excited
states in this isotopic reaction are smaller than those in the FþH2 reaction. The present
quantum calculations also predict a rather lower reaction threshold of �0.1 kcalmol�1

as compared with the previous calculated values, i.e. �0.36 kcalmol�1 of Quantum
Mechanical (QM) results on the Hartke-Stark Werner (HSW) potential energy surface
[44], �0.92 kcalmol�1 of Quasi-Classical Trajectory (QCT) value on the Stark-Werner
(SW) potential energy surface [80]. Figure 5 shows the calculated rate constant for the
ground and the excited F atoms, along with the average rate constant. In this figure, the
ground state rate constant is in good agreement with the average rate constant,
suggesting that the excited state contributes little to the average rate constant. Indeed, it
is found that the excited state contributes 0.9 and 3.1% to the overall reactivity at 200
(corresponding to 5(1000/200) in figure 5) and 500K (corresponding to 5(1000/500) in
figure 5), respectively.
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4.3. Nonadiabatic investigation on the F(2P3/2,
2P1/2)QHD reaction [99, 100]

The two product channels FHþD and FDþH in this reaction were investigated by

calculating their reaction probabilities and the total reaction cross sections deriving

from the initial rovibrational state v¼ 0, j¼ 0, 1 of the reactant HD, and the present

time-dependent wave packet quantum results are compared with the existing

experimental measurement and the single-surface calculated results [81].
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Figure 3. Total multi-state cross sections for the F(2P3/2,1/2)þD2 (v¼ j¼ 0) reaction, as a function of the
collision energy (solid line) and the single-state cross section (dashed line), taken from [98].
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Figure 4. Total multi-state cross sections for the F(2P3/2,1/2)þD2 (v¼ 0, j¼ 0) reaction at very low collision
energy (solid line) and the single-state cross section (dashed line), taken from [98].
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The total reaction cross sections calculated on the ASW potential energy surface [31]
for j¼ 0 and j¼ 1 are shown in figure 6. Similar to the FþH2 reaction, at lower
collision energies, the cross sections of the excited state are slightly larger than those
of the ground state, and such behaviour is more obvious in the DFþH channel than in
the HFþD channel. As far as the DFþH channel is concerned, such behaviour is
much more obvious with j¼ 1 than j¼ 0. Furthermore, the j¼ 0 cross sections of the
ground state show a clear resonance peak in low collision energy region for the HFþD
channel.

In figure 7, we compare the experimental measurement [81] with the averaged cross
sections, calculated from the reaction cross sections, with 80% of HD in j¼ 0 state,
20% in j¼ 1 state and 16% of F in excited spin state as well. It can be seen that the
calculated resonance peak appears at the collision energy about 0.4 kcalmol�1 higher
than the experimental one, and this is probably due to the spin–orbit coupling which
causes an increase of 0.375 kcalmol�1 in the barrier height on the ASW surface [31].
The height of the peak is about 1.3 times that of the experimental result [81].
When compared with the single-surface calculated cross sections on the SW surface [81],
which is about 2 times that of the experimental result, the present calculation has
lowered the height of the resonance peak, thus suggesting a relatively important role of
the spin–orbit coupling in the reaction mechanism.

We further modify the ASW surface by lowering its barrier height using the scale
external correlation technique, and perform again the quantum dynamics calculation
on this modified ASW (MASW) surface to obtain the total reaction cross sections
for FþHD(v¼ 0, j¼ 0) and FþHD(v¼ 0, j¼ 1). We note here that the barrier height
on the ASW surface is lowered by 0.015 and 0.016 eV for the collinear and the lowest
bent configuration barriers, respectively after the modification. The cross sections for
two initial states j¼ 0 and j¼ 1 of the HD-molecule, calculated on the MASW surface,
are shown in figures 8 and 9, and the averaged cross sections are compared with the
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m
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s)
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 Excited rate

Figure 5. Average v¼ 0, j¼ 0 rate constant, along with the ground and the excited state rate
constants for the reaction of F(2P3/2,

2P1/2)þD2 [98].
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experimental results [81] and with our calculated results on the ASW surface in

figure 10, the single-surface results on the SW surface of Skodje et al. [81] are also

shown for comparison. It is clear that the quantum wave packet calculation employing

the MASW surface also reproduced the experimentally observed resonance feature

in the total reaction cross sections of the HFþD channel (see figure 8). Compared with

the above ASW-surface results, this time the resonance peak appeared at a rather lower

collision energy of 0.026 eV, getting close to the experimental observations. The good

agreement of the peak position and yet the reduced peak height from 2.96 a0
2 on the SW

surface to the 2.06 a0
2 on the present MASW surface, as revealed by the comparison

between the single-surface and the MASW-surface results, indicates that the MASW

surface has almost the same adiabatic barrier as the adiabatic SW surface, as well as

that the spin–orbit coupling has a substantial effect on the resonance feature. For the
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Figure 6. The total integral cross sections for the reaction of F(2P3/2,
2P1/2) with HD in j¼ 0 (upper panel)

and 1 (lower panel) as a function of the collision energy, taken from [99].
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DFþH channel, the lowered barrier on the MASW surface causes an energy shift
of 0.015 eV to lower energy region in the MASW results as compared with the ASW
results, and thus achieves a nearly perfect agreement with the experimental
measurements.

The isotopic effect �DFþH/�HFþD of this reaction can be seen by the branching ratio
of the ground and the excited states with HD in j¼ 0 and j¼ 1. Here, the results are
derived from the calculated cross sections on the ASW surface. As shown in figure 11,
the difference between the isotopic effects of the ground and the excited states lies
in that at lower collision energies, the isotopic effect of the excited state is much
more stronger than that at the ground state, because the initial internal energy and the
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Figure 7. Comparison of the averaged cross section for the reaction with 80% HD( j¼ 0) and 20%
HD( j¼ 1) with the experimental results from [81]. The upper and the lower panels correspond to the reaction
of FþHD!HFþD and FþHD!DFþH, taken from [99].
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electronic angular momenta are different for the excited and the ground states.
Finally, we show the energy-dependent reactivity of the excited state I¼ �(P1/2)/�(P3/2)
for the two product channels with HD in j¼ 0 and j¼ 1 in figure 12. At low collision
energies, the reactivity of the excited state is larger than 1, and the largest value with
j¼ 1 is found to be �0.012 and 0.018 eV for the HFþD and DFþH channels,
respectively. As the collision energy increases, the reactivity of the excited state
gradually decreases, and is no more than 43% of reactivity of the ground state at a
higher collision energy.
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Figure 8. The total integral cross sections for the reaction of F(2P3/2,
2P1/2) with HD in v¼ 0, j¼ 0 as

a function of the collision energy on the MASW surface [100].
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Figure 9. The total integral cross sections for the reaction of F(2P3/2,
2P1/2) with HD in v¼ 0, j¼ 1 as

a function of the collision energy on the MASW surface, taken from [100].
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4.4. Electronic quenching process in the O(1D)QN2!O(3P)QN2 reaction [101]

The issue is of great theoretical interest due to its importance in atmospheric chemistry.
Both the heavy reactant and the deep potential well on the ground singlet potential
surface present the challenge to the quantum study, and the only previous time-
independent quantum calculation was that of Takayanagi [70], in which a two-surface
collision model is used to describe the electronic quenching process. In our time-
dependent study, both the three-surface and two-surface collision models are used to
investigate the role of the second excited state in the quenching process. One advantage
of the time-dependent wave packet method over the time-independent quantum method
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Figure 10. Comparison of the averaged cross section for the reaction with 80% HD(v¼ 0, j¼ 0) and 20%
HD(v¼ 0, j¼ 1) with the experimental results [81] and other theoretical calculation (ASW PESs calculation
from [99], single PES result form [81]). The upper and lower panels correspond to the reaction of
FþHD!HFþD and FþHD!DFþH, taken from [100].
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is that the information over a range of collision energies can be determined in a single
calculation which help in investigating if the resonance feature exists in the calculated
total electronic quenching cross sections, and enables to find the information that lacks
in the time-independent quantum calculation. The present time-dependent results
are also compared with the experimental data [82] and the previous theoretical results
[70, 71].
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Figure 11. The branching ratio for the reaction of F(2P3/2,
2P1/2) with HD in j¼ 0 and j¼ 1 as a function

of the collision energy, taken from [99].
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Figure 12. The energy-dependent reactivity of the spin–orbit excited state for the reaction of F(2P3/2,
2P1/2)

with HD in j¼ 0 and j¼ 1 as a function of the collision energy, taken from [99].
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The adiabatic potential energy surfaces of the 1A0, 3A0, and 3A00 states and the
spin–orbit couplings between the singlet and triplet states are used in the quantum

calculations. Three different types of singlet surface, the model surface ZPM2 of Miller

et al. [71], and the ab initio fitted DMBE2 surface of Nakamura and Kato [83] as well as
the modified DMBE2 surface by the author, along with the constant spin–orbit

coupling of 80 cm�1, and the analytical spin–orbit coupling of Nakamura and Kato [83]
are employed to study the influence of the singlet potential surface and the spin–orbit

coupling on the reaction mechanism. The triplet surfaces used here are those fitted to

ab initio calculated energy points by Nakamura and Kato [83]. The CS approximation
is employed in the calculation for total angular momentum J40, and the electronic

angular momenta are neglected in the Hamiltonian of the system.
Figure 13 shows the time evolution of the calculated probabilities within the two-

surface collision model including the DMBE2 singlet surface for the total angular

momentum J¼ 10. It is clear that a propagation time of 350000 a.u. is sufficient for

obtaining the converged results. For each J, the calculation within the three-surface
collision model costs about 250 h of CPU time using Xeon 2.1GHz processor,

indicating the difficulty for performing quantum calculations for this reaction system.
Figures 14 and 15 present the total quenching cross sections calculated on the

original/modified DMBE2 surface and on the ZPM2 surface, using both analytical
and constant spin–orbit couplings, and based on both two-surface and three-surface

collision models. In our modified DMBE2 singlet surface, the faked barrier that caused
the energy threshold behavior of the calculated probabilities has been removed without

sacrificing its topological character. For the ZPM2 surface and the modified DMBE2

surface, we estimated the total quenching cross sections from the capture model of
Gray et al. [53] to save the computational resources. Two experimentally measured cross

sections [82] and the previous theoretical results [70, 71] are also shown for comparison.

The calculated quenching cross sections on the DMBE2 surface within the two-surface
model have shown no obvious resonance features, which is totally contrasting to the

calculated reaction probability. Compared with the DMBE2 calculation, the energy

threshold behavior of the quenching cross section on the modified DMBE2 surface also
disappears, and the calculation on the modified DMBE2 surface produced larger cross

sections. There is a reasonable agreement between the modified DMBE2 results within
the three-surface collision model and the experimental measurement at 8� 6 kcalmol�1

(0.347� 0.26 eV), though the calculated results seem to be somewhat smaller than the

experimental data at a collision energy of about 1 kcalmol�1 (0.04 eV). Further, the
present ZPM2 cross sections are larger than the time-independent quantum results, but

are smaller than the TSH result by Miller and coworkers [71]. It is found that the cross

sections estimated on the ZPM2 surface with the analytical spin–orbit coupling within
the three-surface collision model agree well with the experimental data measured at

about 1 kcalmol�1, and it seems that the ZPM2 results tend to agree with the

experimental data at 8� 6 kcalmol�1. Further, the insensitivity of the resonance
structure in the calculated reaction probability to the spin–orbit function form, and

the remarkable influence of the singlet surface on the calculated reaction probability,
as well as the almost equal role of the second excited state 3A00 to the first excited state
3A0 in the electronic quenching process have been revealed in this study, with the first

two further confirming the previous quantum time-independent study [70].
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4.5. The intersystem crossing effects in the O(3P,1D)QH2 reaction [102]

The difficulty for performing a quantum study partly arises from the fact that too many

electronic states are involved in this issue and also that there is a deep potential well

on the singlet potential energy surface. The only previous two TSH studies on the

intersystem crossing effects were those of Schatz et al. [55, 56]. Here, we present our

time-dependent quantum calculations on the issue and compare them with the

corresponding TSH results.
The present calculations employed the four adiabatic potential energy surfaces of the

3A00, 3A00, 3A0 states of Kuppermann and co-workers [84] and 1A0 state of Dobby and

Knowles [85], and the spin–orbit couplings of Schatz and Maiti [56]. In figures 16–19,

we show the fine-structure resolved quantum cross sections for the wave packet initially

on the four electronic states of 3A00(1), 3A00(2), 3A0, and 1A0 asymptotically correlating
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0.01�0.1 eV. Dashed line – calculated on the original DMBE2 surface using two coupled surfaces and
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to the reactant fine-structure of O(3P2,
3P1,

3P0,
1D2)þH2. In the O(3P2)þH2 reaction, it

is found that the largest nonadiabatic transition is to the 3A0 (�1/2) state, with a branch
ratio of 5� 20%. The next is to the 1A0 (�1/2) state, with a branch ratio of 0.6� 1.8%,

and the smallest is to the 3A00(2) (�3/2) state, with a branch ratio of 0.03� 0.1%. In the
case of O(3P1)þH2, the nonadiabatic transition to the 1A0, 3A0, and 3A00(1) states has
a branch ratio of 1.5� 4.8%, 1� 2.6%, and 0.07� 0.58%, respectively. With respect to

the fine structure O(3P0)þH2, the largest spin–orbit-induced nonadiabatic transition
is to the 3A00(1) state, with a branch ratio of 11.6� 56.6%, followed by the transition

to the 3A00(2) state with a branch ratio of 0.45� 1.7%, and the least is the transition to
the 1A0 state with a branch ratio of 0.1� 1.1%. The rather large branch ratio of the
transition to the 3A00(1) state, for example, 50% at 0.465 eV and 40% at 0.54 eV,

indicates that at some collision energies the spin–orbit coupling between 3A0 and 3A00(1)
has significant contribution to the intersystem crossing in the O(3P0)þH2 reaction.

As for the O(1D2)þH2 reactant fine structure, the transition to the 3A00(1), 3A00(2), and
3A0 state has a branch ratio of 0.27� 0.33%, 1.17� 1.66%, 0.16� 0.22%, respectively.
It should be noted that the investigated collision energy range for the triplet state is

different from that of the singlet state. Furthermore, the unique quantum resonance
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Figure 16. Calculated product fine structure resolved cross sections derived from ground rovibrational
initial state as a function of collision energy of 0.35� 1.2 eV for the wave packet initially on the 3A0 0(1) surface
asymptotically correlating to the reactant fine structure O(3P2)þH2. (a) Cross section obtained on initial
propagated surface 3A0 0(1). (b)–(d) The three cross sections caused by the spin–orbit-induced transition.
Here they correlate to 3A0 0(2), 3A0, and 1A0 surfaces, respectively (taken from [102]).
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features are also observed in some of the calculated cross sections. The quantum
dynamics calculations showed that the transitions between the triplet states of different
symmetries, especially those between 3A0 and 3A00(1), play more significant roles than
the transitions between the singlet and triplet states during the intersystem crossing.
Such transitions are particularly efficient at certain low collision energies in the case of
the reactant fine structure O(3P0)þH2. The roles of the singlet–triplet transitions are
negligible for branch ratios below 5%. However, the effects of the spin–orbit coupling
on the total reaction cross sections, obtained by averaging the fine-structure resolved
cross sections in the O(3P2,1,0)þH2 reaction, are insignificant. This agrees with the
recent studies of Braunstein et al. [86] and Balakrishnan [87].

Figure 20 shows the product ratio of the OH spin state �3/2 to �1/2 for the wave
packet initially on the triplet surfaces. The value stays at around 2.75 : 1 at collision
energies higher than 0.6 eV, while it covers a wide range of 3 : 1� 5 : 1 at lower energies.
The present ratio is a little higher in comparison with the TSH ratio of approximate
2 : 1. As shown in figure 21, the comparison between the previously reported [56] and
the present quantum results shows a qualitative agreement, but some differences
are also found in the comparison. The present study yields a lower threshold than
the TSH study for the barrier processes due to the tunneling effects. At high energies,
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Figure 17. The same as figure 20, but for the wave packet initially on the 3A0 0(2) surface asymptotically
correlating to the reactant fine structure O(3P1)þH2. (a) On the 3A0 0(2) surface, (b) on the 3A0 0(1) surface,
(c) on the 3A0 surface, and (d) on the 1A0 surface. (taken from [102].)
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the product fine-structure resolved cross sections by the present quantum calculation

are smaller than the TSH cross sections for the O(3P2,1,0)þH2 reaction, and the only

exception is the �3/2 cross section in the O(3P0)þH2 case, where the quantum result is

larger than the TSH result. This suggests that the present quantum calculation has

revealed a more significant role of the coupling between the triplet states of different

symmetries than the TSH calculation. For O(1D2)þH2 case, the present calculation

yielded a larger cross section for the product spin state �1/2 and a smaller one for the

product spin state �3/2.

4.6. Nonadiabatic quantum calculations on the DQQH2 reaction [103]

The impetus behind our theoretical investigation in this reaction system is to make a

direct comparison between the theoretically calculated quantities and the experimental

measurements, since almost all the previous time-independent quantum calculations

are limited to the total angular momentum J¼ 0. The deep singlet potential well still

challenges the quantum calculations though this light system lending itself easily to the

exact quantum dynamical calculations.
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Figure 18. The same as figure 20, but for the initial wave packet on the 3A0 surface asymptotically
correlating to the reactant fine structure O(3P0)þH2. (a) On the 3A0 surface. (b) On the 3A0 0(1) surface.
(c) On the 3A0 0(2) surface. (d) On the 1A0 surface. Taken from [102].
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We studied the three competitive channels of the reactive charge transfer (RCT),
the nonreactive charge transfer (NRCT), and the reactive no charge transfer (RNCT)
in this reaction system. Three electronic states of 11A0, 21A0, and 31A0 are involved in
the nonadiabatic processes and the corresponding diabatic Kamisaka-Bian-Nobusada-
Nakamura (KBNN) potential matrix, recently fitted to ab initio data by Nakamura and
co-workers [64], are employed in the quantum calculations. The present time-dependent
quantum probabilities for J¼ 0 are compared with the time-independent quantum
results [64], and the calculated total reaction cross section are compared with the
experimental measurements [88]. We carried out the coupled-channel (CC) calculations
and the number of K used in the CC calculations is up to 5.

A comparison of the present calculated probabilities for J¼ 0 of the RCT and NRCT
channels with the time-independent results [64] in figure 22, shows a reasonable
agreement between the two results with rich resonance structure and similar energy
threshold. But the peak positions and the peak widths of the resonances are different,
probably arising from the different dynamical scheme, and such differences have little
effect on the calculated cross sections since many of these resonance structures would be
washed out through J-sum. As we already mentioned above, both the time-dependent
and time-independent quantum scattering calculations produced the same results for
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Figure 19. The same as figure 20, but for the initial wave packet on the 1A0 surface asymptotically
correlating to the reactant fine structure O(1D2)þH2 within collision energy range 0.05� 0.4 eV. (a) On the
1A0 surface. (b) On the 3A0 0(1) surface. (c) On the 3A0 0(2) surface. (d) On the 3A0 surface. Taken from [102].
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the abstraction reaction of FþH2. Also, it seems to be hard to get the converged results

for the Dþ
þH2 reaction by using the time-independent approach since no time-

independent quantum cross sections have been reported thus far. Therefore, the

difference we show here may suggest that the time-dependent wave packet method

is probably more suitable for describing the reactions in which the long-lived complex

is formed than the time-independent quantum method.
Because the experimental data for NRCT is still lacking thus far, we showed the

present quantum cross sections deriving from the initial rovibrational state v¼ 0, j¼ 0

of reactant H2 for the RNCT and RCT channels, along with the existing experimental

measured cross sections [88] in figure 23. The present quantum calculations give

a threshold of about 1.8 eV for the RCT channel, which is in good agreement with

the experimental value of 1.82 eV. Also, the RCT cross sections agree reasonably well

with the experimental results. The computed quantum values for the RNCT channel
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(a) For low collision energy. (b) For high collision energy. (taken from [102].)
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are somewhat higher than the experimental results. One of the most probable reasons
for the discrepancy between the RNCT values and the experimental results is that the
present calculations were carried out for the ground rovibrational initial state of the

reactant H2, whereas the experimental data were measured at room temperature.
Therefore, a more reasonable comparison should be made between the j¼ 1 calculation

and the experimental data.
The present quantum calculations illustrated that the RNCT is the dominant channel

in the reaction of Dþ
þH2(v¼ 0, j¼ 0), and thus leads to a dominant insertion reaction

mechanism. But the nonadiabatic channels of RCT and NRCT will gradually open up

for a higher collision energy. The alternative ascending fashion of the RCT and NRCT
cross sections, as shown in Figure 24, indicates that the two nonadiabatic channels
are very competitive and comparable to each other at lower collision energies, but once

the collision energy exceeds 2.2 eV, the cross section of the RCT rises rapidly and
becomes the favoured channel. In addition, the strong v-dependence of the calculated

probabilities has also been revealed in the present quantum calculations, and thus
predicted that the vibrational excitation of the reactant H2, especially its closest level
to the surface crossing of v¼ 4, plays a very important role in the electronically

nonadiabatic transitions of the reaction system.
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4.7. Nonadiabatic investigation on the HQQD2 reaction [104]

Compared with the Dþ
þH2 reaction, this isotopic variant is heavier and less studied by

theorists. Similar to Dþ
þH2, we calculated the total reaction probabilities and the total

reaction cross sections for the RCT, NRCT, and RNCT channels by performing the
CC calculations on the KBNN diabatic potential energy surface [64]. The quantum
cross sections are compared with experimental measurements [89] and with TSH results
[69]. We also discussed the underlying mechanism for the reaction system.

The total reaction cross sections deriving from the initial ground rovibrational state
of D2 of the three channels are shown in figure 25, along with the experimental
measurements [89] and the previous TSH results [69]. There is an overall agreement
between the experimental and the present quantum results, with better agreement at
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Figure 22. A comparison of probabilities for J¼ 0 between the previous time-independent [64] and the
present time-dependent quantum studies. (a) RCT. (b) NRCT, taken from [103].

Time-dependent wave packet approach 229

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
6
:
1
4
 
2
1
 
J
a
n
u
a
r
y
 
2
0
1
1



higher collision energies than at lower collision energies. For RCT, the present quantum
calculations give a threshold of about 1.90 eV, which is in better agreement with the
experimental value of 1.86 eV than the TSH calculated value of 2.01 eV. Compared with
the TSH results, the present quantum calculations produce much larger cross sections.
Of the two nonadiabatic channels, the NRCT channel is found to be slightly
preferential over the RCT channel in this isotopic reaction (see figure 26), different from
the Dþ

þH2 reaction system. The reason probably lies in the fact that the heavy
isotopic mass of the reaction system makes it rather difficult for the reactant to
surmount the barrier on the excited surfaces to form the RCT channel.
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Figure 23. A comparison between the experimental data [88] and the present calculated quantum cross
sections; taken from [103].
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Figure 24. Computed cross sections for the two nonadiabatic processes of the RCT and NRCT (from [103]).
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Hence, similar to the Dþ
þH2 reaction, the largest RNCT cross sections indicate the

dominant insertion reaction mechanism in the case of Hþ
þD2 (v¼ 0, j¼ 0), but the

increasing trend of the RCT and the NRCT results over the investigated energy range
also indicates that, at higher collision energies, the nonadiabatic transition mechanism
involving several potential energy surfaces may act and its contribution to the
underlying mechanism increases slightly as the collision energy increases. The calculated
results deriving from different initial states of D2 molecule also provide an insight into
the effects of the vibrational excitation and the rotational excitation on the reaction
probabilities. The increase of the RCT and the NRCT probabilities with increasing
initial vibrational quantum number v, verifies the important role of the vibrational
excitation in the nonadiabatic transitions and also the fact that v¼ 4 of D2 is the most
likely vibrational level to access the crossing seam. The rotational excitation has little
effect on the RCT channel while it enhances the NRCT to some extent and mildly
decreases the RNCT probabilities. It is also revealed that the vibrational excitation
leads to more remarkable nonadiabatic transitions than the rotational excitation.

5. Conclusions

The time-dependent wave packet approach has been improved for the treatment of
nonadiabatic problems, and the method is then applied to dynamics studies in a variety
of triatomic reaction systems, such as the reactions over barriers, the reactions involving
long-lived complex formation, and the ion–molecule collisions with charge transfer
processes. These applications not only produce numerical results serving to interpret
and to predict nonadiabatic features of chemical reactions, but also to demonstrate that
the improved time-dependent quantum method is computational tractable and it may

Figure 25. Comparison among the present quantum cross sections, experiment measurements of Teloy et al.
[89] and TSH calculation of Yokoyama et al. [69]. Solid line, closed square and star correspond to the present
work, the experimental data and the TSH results respectively; taken from [104].
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be a good method complement to the time-independent quantum approach for treating
the nonadiabatic chemical processes, particularly for the study of nonadiabatic systems

with deep wells where the quantum treatment assumes even further complexity due to
the complex formation.

Although the computed total reaction cross sections with the present time-dependent
wave packet method can be used for a direct comparison with experimental

measurement, it is necessary to further develop this method to produce state-resolved
quantum results such as the differential cross sections and the product state

distributions for a more detailed comparison with experiments, due to the fact that
the state-to-state differential cross sections have already been obtained experimentally
for the triatomic and the larger chemical systems. In this regard, our work in progress

includes the FþH2 reaction [90]. This method needs to be modified and extended to the
reactions with four or more atoms as well since the time-dependent wave packet method

has been applied to a variety of triatomic systems thus far. But such quantum treatment
of polyatomic systems is rather difficult partly due to the increasing computational
cost and the lack of an accurate diabatic potential energy surface even for four-atom

systems. It is thus emphasised that significant advances in the electronic structure
theory and in the capacity of computers play a crucial role in the extension of the

method to the polyatomic reactions.
In this review, we mainly concentrate on the applications to reactive scattering

systems that vary widely in their dynamical behavior. However, it is possible to make
this diversity expanded in applications to other processes. A similar idea can be used to

describe the electron dynamics by solving the Schrödinger equation of electrons coupled
with nuclei, and thus the time-dependent wave packet method can be extended to the

frontier attosecond area where the attosecond technique is used to probe the electron
dynamics that occurs within a time scale of attoseconds. In our recent work [91],
we investigated the recollisions between an electron and D2

þ ion and reproduced

the experimentally measured kinetic energy spectra of Dþ ion using a similar

Figure 26. Comparison of cross sections between the RCT and the NRCT processes; taken from [10].
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time-dependent wave packet method. Thus, the quantum physical picture for the
entanglement between the electron and the nuclei are provided through the calculated
recollision probabilities. The example of describing one electron dynamics has proved
the feasibility of interpreting the molecular dynamics in attosecond time scale by using
the time-dependent wave packet methodology, with more challenges coming from the
attempt to describe the dynamics involving two or more electrons. Studies using the
present time-dependent wave packet method could also be devoted to the unimolecular
nonadiabatic processes, such as the cases in the resonance studies of HþH2 [92] and
ClþH2 [93] as well as in the photodissociation investigations [94]. Still, many other
efforts have been devoted to the treatment associated with photodissociation dynamics
[95, 96, 105–111], but these are quite beyond the scope of this review.
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